AU9290 Stepping Motor Driver

Users Manual

Tamagawa-seiki reserves the right to make changes to this document without notice.

MNL000718W00 rev200

Contents

1. Int	roduction	4
1.1.	Power supply for AU9290	4
1.2.	Applicable stepping motors	4
1.3.	Setting and storing of parameters	5
1.4.	Optional functions	5
1.5.	Part number for ordering	6
2. Sel	lection of Power supply	7
3. Ins	stallation of AU9290	7
4. Con	nnection	
4.1.	Connection to CN1	
4.2.	Connection with motor	11
4.3.	Connection with PC	11
4.4.	Connection for Parallel I/O signals	12
4.5.	Connection for RS485 Serial communication signals	13
4.6.	Connection for RS232C Serial communication signals	14
5. Sta	atus indication	14
6. Tri	al operation (Please execute in advance of real operation.)	15
(1) Co	onnect with PC	15
(2) Se	et motor parameters	15
(3) Di	rive your motor	15
(4) Sa	ave parameters	15
7. Op	eration by pulse command signals	16
8. Op	eration by Parallel I/O signals	17
9. Op	eration by serial communication	20
9.1.	Protocol of serial communication	21
9.2.	Protocol of TSC-Standard serial communication	22
10. V	Various functions of AU9290	23
10.1.	Control mode	23
10.2.	Pulse command mode	23
10.3.	Positioning resolution	24
10.4.	Rotating motor current	24
10.5.	Stopping motor current	24
10.6.	PIO input filter	24
10.7.	Origin search operation and Enable signal porarity	25

10.	.8.	Smoothing parameters	27
10.	9.	Serial communication parameters	27
10.	10.	Motor parameters	28
10.	11.	Parameters handling	28
10.	12.	Status monitor	29
10.	13.	Alarm histories	29
10.	14.	Step-out detection	30
11.	Pro	tection for abnormal status	31
12.	Dat	a list	33
13.	Spe	ecifications	39
14.	Out	tline drawing	40
Revis	sion ł	nistory	41

1. Introduction

AU9290 is a high functional and quite a compact stepping motor driver of latest design.

AU9290 drives a stepping motor with micro-step method, and minimize motor vibration. Only 1 rpm operation can be performed without bothering limitation of self-starting frequency of stepping motor.

AU9290 also has a profile generation function, and can operate stepping motor without getting pulse signal inputs.

Parallel I/O signals are available to set operation commands in AU9290.

No pulse generator is necessary to operate stepping motor with expected velocity by using parallel I/O signals.

RS485 serial communication is also available to transmit operation commands to AU9290.

Multi-axis motor control can be realized with only 2 wires connection by RS485 serial communication.

Parameters settings for AU9290 are easily executed with USB port connecting to PC. AU9290 will contribute to improvement in performance and downsizing for all industrial equipments.

1.1. Power supply for AU9290

AU9290 has two types of power supply range. A standard model is of range from 15V to 36V D.C. Another model is of range from 30V to 50V D.C.

1.2. Applicable stepping motors

All 2 phase stepping motors may be operated by AU9290 with setting the motor parameters correctly in AU9290.

AU9290 has 2 types of drive method, unipolar drive type and bipolar drive type.

AU9290 of unipolar drive type is designed only for unipolar wiring stepping motor, and AU9290 of bipolar drive type is for bipolar wiring stepping motor. They are distinguished by the part number.

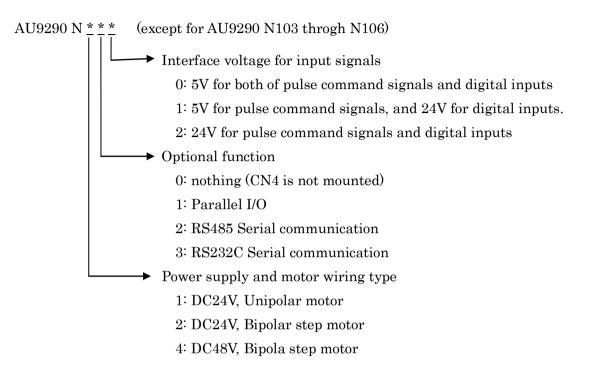
Please pay attention to the part number of AU9290 correctly adapted to your stepping motor.

Note: Although AU9290 of bipolar drive type is designed for bipolar motor, it also can drive unipolar motor. Please see article 4.2 'Connection with motor'.

1.3. Setting and storing of parameters

AU9290 is necessary to be set parameters correctly to drive a motor.

Our set-up software will help you to do it easily, by connecting AU9290 with PC by USB cable.


After setting parameters, please save them in non-volatile memory on AU9290 by clicking Parameter Save button.

You can also try to drive a motor by the set-up software.

1.4. Optional functions

AU9290 can get drive commands from Parallel I/Os (In: 4 point, Out: 1 point) or RS232 serial communication as well as Pulse command signal inputs. You can choose them by designating the part number like following article 1.5.

1.5. Part number for ordering

Value type: AU9290N103, N104, N105, N106

Type number	Power and Motor	Input and Output signals
AU9290N103	DC24V Power source	4 digital Inputs, Enable Input (5V I/F)
AU9290N104	Unipola wiring Motor	4 digital Inputs, Enable Input (24V I/F)
AU9290N105		RS485 and Enable Input (5V I/F)
AU9290N106		RS485 and Enable Input (24V I/F)

Note: 2 Digital Inputs of AU9290N103 and N104 may be used as command pulse signals as well as PIO input signals.

Note: AU9290N103 and N104 do not have PIO digital output.

Note: AU9290N105 and N106 do not have command pulse signal inputs.

2. Selection of Power supply

Select a power supply with the range of DC15 to 36V for N1xx and N2xx, and rage of DC30 to 50V for N4xx.

Capacity of the power supply is dependent on stepping motor. It should be able to supply the rating current of stepping motor.

Power voltage is a fundamental factor to drive a stepping motor. Higher rotation speed needs higher power voltage. If you need not to rotate a motor so high speed, you may select a lower voltage power supply.

It is necessary to confirm that power voltage is high enough for your motor to be driven at a required speed without step-out.

When a stepping motor is decelerated, some electric current may flow back to power source temporarily. In this case, power voltage goes up and it may cause power supply shut-down by over voltage protection. Accordingly, the power source that does not have enough capacity against over voltage is not suitable to use for motor driving.

We recommend installing enough capacitance (470 uF or more) to power supply line.

On the other hand, since AU9290 has a function of over voltage protection, AU9290 may go alarm status and stop the operation if power voltage goes over the alarm level, so that power voltage does not increase.

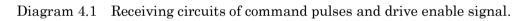
3. Installation of AU9290

AU9290 has a structure of open-board type. Please secure AU9290 with screw hole in each corner.

Since AU9290 will heat during operation, please consider the installation location where lets air through and has enough distance from heat generating element.

4. Connection

4.1. Connection to CN1


CN1 shall be connected drive power source, pulse command signals and drive enable signal as shown in Table 4.1. Table4.1-2 and Table 4.1-3 shall be referred for Value type; AU99290N103, N104, N105, N106.

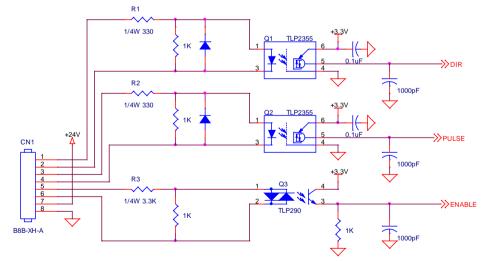
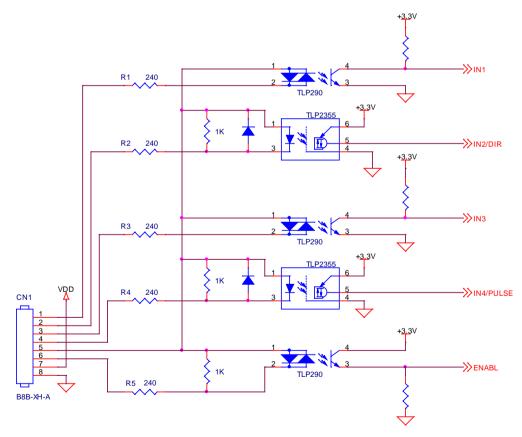

Pin	Signal name	Description	I/O
1	Command Pulse_1+	R-Pulse signal at F-Pulse/R-Pulse mode.	IN
2	Command Pulse_1-	Direction signal at Pulse/Dir mode.	IN
3	Command Pulse_2+	F-Pulse signal at F-Pulse/R-Pulse mode.	IN
4	Command Pulse_2-	Pulse signal at Pulse/Dir mode.	IN
5	Enable+		IN
6	Enable-	Drive enable signal	IN
7	VDD	Connect + side of power supply (DC15 to 36V)	IN
8	VSS	Connect – side of power supply	IN

Table 4.1 CN1 Connection

Differential line drivers are recommended to use for pulse command signals source. Open collector output is commonly used for Enable signal.

The receiving circuits are shown in Diagram 4.1..




- X The value of R1 and R2 are 3.3 k ohms in case of AU9290Nxx2.
- % The value of R3 is 330 ohms in case of AU9290Nxx0.

Pin	Signal name	Description	I/O
1	IN1	Digital Input-1.	IN
2	IN2	Digital Input-2 / Command Pulse-1	IN
3	IN3	Digital Input-3	IN
4	IN4	Digital Input-4 / Command Pulse-2	IN
5	Input Common	Common Input for DIN1 – DIN4 and Enable signals.	IN
6	Enable	Drive enable signal	IN
7	VDD	Connect + side of power supply (DC15 to 36V)	IN
8	VSS	Connect – side of power supply	IN

Table 4.1-2 CN1 Connection for AU9290N103 and N104

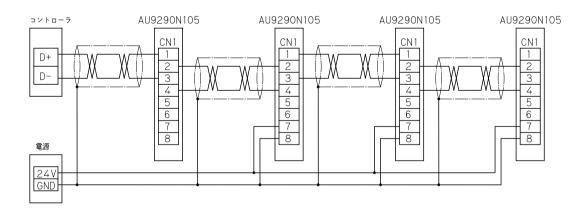
AU9290N103 and N104 have 5 digital inputs and 2 of them are shared with command pulse inputs. Open collector output is commonly used for them. Diagram 4.1-2 is indicating the receiving circuits.

 $\%\,$ The value of R1 through R5 are 4.4 k ohms in case of AU9290N104.

 \times AU9290N103 and N104 do not have digital output.

AU9290 Users Manual

Pin	Signal name	Description	I/O
1	D+		IN
2	D+	Positive side of RS485 differencial signal	IN
3	D-		IN
4	D-	Negative side of RS485 differencial signal	IN
5	Enable+	Duine or able sime al	IN
6	Enable-	Drive enable signal	IN
7	VDD	Connect + side of power supply (DC15 to 36V)	IN
8	VSS	Connect – side of power supply	IN


Table 4.1-3 CN1 Connection for AU9290N105 and N106

In case of AU9290N105 and N106, RS485 differencial signals are connected to pin1 thorough pin4, so that daisy chain connection is easily realized.

A terminal resister should be mounted on the final terminal point of RS485 bus line. AU9290N105 and N106 have a jumper socket on the print board. When the socket is inserted, the terminal resister is connected to RS485 bus line. Please remove the socket to remove the terminal resister.

Please refer the previous paragraph for the receiving circuits of Enable signal

Diagram 4.1-3 Connection example for RS485 differencial bus line.

X Jumper socket should be removed for all AU9290N105 other than one of right edge on the above connection.

4.2. Connection with motor

Stepping motor shall be connected to CN2.

In case of unipolar type driver (AU9290N1xx), CN2 is 6 pins connector, and 4 pins connector for bipolar type driver (AU9290N2xx and AU9290N4xx).

Unipolar type driver can drive only unipolar motors. On the other hand, bipolar type driver can drive both of bipolar motor and unipolar motor.

Connect a stepping motor as follows.

	a. 1		TIO
Pin	Signal	Description	I/O
1	COM1	A phase common	OUT
2	COM2	B phase common	OUT
3	А	A phase	OUT
4	Ā	A phase	OUT
5	В	B phase	OUT
6	$\overline{\mathrm{B}}$	B phase	OUT

Table 4.2Connection of motor for unipolar type driver (CN2)

Table 4.3	Connection of motor for bipoplar type driver (CN2)
-----------	--

Pin	Signal	Description	I/O
1	А	A phase of bipolar motor and unipolar motor	OUT
2	$\overline{\mathrm{A}}$	Ā phase of bipolar motor /	OUT
		A phase common of unipolar motor	
3	В	B phase of bipolar motor and unipolar motor	OUT
4	$\overline{\mathrm{B}}$	B phase of bipolar motor /	OUT
		B phase common of unipolar motor	

4.3. Connection with PC

CN3 on AU9290 is USB Min-B connector, and can be connected with PC using USB Min-B cable on the market.

It is necessary to install USB Driver into PC in advance to launch our set-up software. Please refer to installation manual for AU9290 set-up software.

4.4. Connection for Parallel I/O signals

Parallel I/O signals, 4 inputs and 1 output, are available on AU9290Nx1x as optional function.

Please connect with CN4 as follows.

Pin	Signal	Description	I/O
1	IN1	Digital input-1	IN
2	IN2	Digital input-2	IN
3	IN3	Digital input-3	IN
4	IN4	Digital input-4	IN
5	InputCom	Digital input common signal	IN
6	OUT1+	Digital output (Collector side)	OUT
7	OUT1-	Digital output (Emitter side)	OUT

Table 4.4 PIO signals connection (CN4)

Diagram 4.2 indicates inputs/output circuits of Parallel I/O signals.

Interface voltage shall be 5V for AU9290Nx10 and 12V to 24V for AU9290Nx11 and AU9290Nx12.

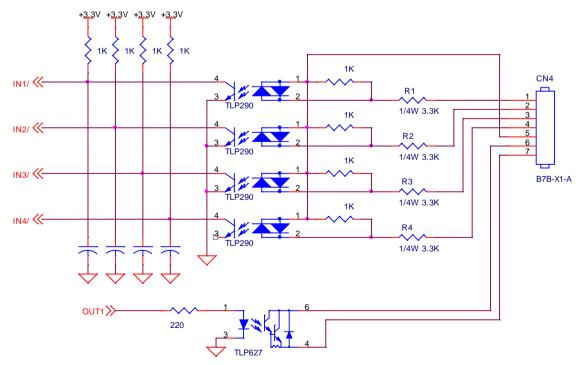


Diagram 4.2 Inputs/output circuits of Parallel I/O signals.

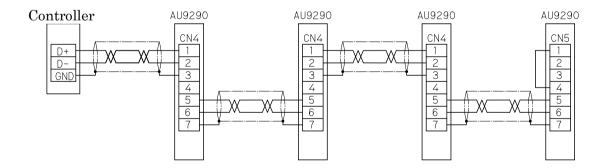
 $\ensuremath{\texttt{W}}\xspace$ Value of R1,R2,R3 and R4 is 330 ohms in case of AU9290Nxx0,

AU9290 Users Manual

4.5. Connection for RS485 Serial communication signals

AU9290Nx2x is provided with RS485 serial communication function. Please connect to CN4 as follows.

Pin	Signal	Description	I/O
1	D+	RS485 differential signal +	IN
2	D-	RS485 differential signal –	IN
3	GND	Circuit ground	IN
4	R	At the end of RS485 serial bus connection, connect	IN
		this pin with pin-1/pin-5 to connect terminal resistor.	
5	D+	RS485 differential signal +	OUT
6	D-	RS485 differential signal –	OUT
7	GND	Circuit ground	OUT


Table 4.5 RS485 serial communication signals connection (CN4)

See Diagram 4.3 for example of RS485 serial bus connection.

Daisy chain connection is applicable.

A terminal resistor (120 ohms) can be connected at the end of RS485 serial bus by connecting pin-4 with pin-1.

Diagram 4.3 RS485 serial bus connection examples.

4.6. Connection for RS232C Serial communication signals

AU9290Nx3x has RS232C serial communication function.

Please connect RS232C signals to CN4 in according to the following table.

Pin	Signal	Description	I/O
1	TXD	RS232C signal output from Driver	IN
2	RXD	RS232C signal input to Driver	IN
3	GND	Circuit ground	IN
4	NC		IN
5	NC		IN
6	NC		OUT
7	GND	Circuit frond	OUT

表 4.6 RS232C Serial communication connection (CN4)

5. Status indication

- AU9290 operating status is indicated by LEDs on PCB.
- (1) Alarm status:

Red LED repeats blinking in a manner that LED blinks to a number of times as same as alarm code and makes a bit long turning off.

(2) Drive off status:

Green LED turns on.

(3) Drive ON status:

Green LED repeats blinking.

6. Trial operation (Please execute in advance of real operation.)

(1) Connect with PC

Please install both USB driver and Set-up software in advance of connecting power source to AU9290.

Connect power source and turned it on.

Connect AU9290 with PC by USB cable, and launch our set-up software.

Click COM START button for PC to start connection with AU9290.

(2) Set motor parameters

First of all, set motor parameters.

Click 'Trial Operation' tab to open motor setting window.

Set Data-ID #40 to #44 in according to the value specified in your motor data-sheet.

Data-ID	ID name	Description
40	Motor rate current	Set motor rate current in unit of 0.01A.
41	Winding resistance	Set motor winding resistance in unit of 0.01 ohms
42	Winding inductance	Ser motor winding inductance in unit of 0.01 mH.
44	Basic Number of Steps	$360 \div$ Basic step angle (degree)

Example for Data-ID #44: Set 200 when basic step angle is 1.8 degree.

(3) Drive your motor

After setting motor parameters, connect the motor with AU9290.

Click 'Enable' button on upper window, then you may confirm motor shaft being locked, while AU9290 makes current flow into the motor.

Set 100 [rpm] to 'Target Velocity' and set 1 [rev.] to 'Number of revolution'.

Click 'Position control set' button, then you can see motor makes 1 rotation.

Set -1 [rev] to 'Number of revolution' and click 'Position control set' button again.

You can see motor makes 1 rotation in the opposite direction and comes back to original position.

(4) Save parameters.

If the trial operation is finished successfully, you need to store motor parameters in non-volatile memory not to be lost by turning off the power supply. Please click 'Parameter Save' button.

7. Operation by pulse command signals

Pulse command signals are commonly used to drive a stepping motor.

ID	Name	Description
0	Control mode Please set 1 for pulse command signals operation	
1	Pulse command mode 0 : F-Pulse and R-Pulse	
		1 : Pulse and Direction
		2: F-Pulse and R-Pulse (opposite direction)
		3 : Pulse and Direction (opposite direction)
2	Micro-step magnification	This value determines the positioning resolution.
		The resolution is calculated by :
		(Basic Number of Steps)×(Micro-step magnification)

[Parameters for pulse command signals control]

In case of pulse command signals operation, motor rotates by an increment of the number of input pulses.

Data-ID #0 shall be set to 1.

Data-ID #1 shall be select in according to pulse signals style of your pulse generator (1) Forward Pulse / Reverse Pulse: set 0 to Data-ID #1

(2) Pulse / Direction: set 1 to Data-ID #1

If you want to change the definition of rotation direction, you may set 2 or 3, so that motor rotates in opposite direction by pulse command signals.

Data-ID #2 defines the positioning resolution.

If you set X to Data-ID #2, the positioning resolution is calculated by N x X, where N is basic number of steps (Data-ID #44), that is, motor rotates 1 revolution with N x X pulses.

You can determine positioning resolution regardless of micro-step resolution for AU9290 to drive a stepping motor.

Even if you set 1 to Data-ID #2, AU9290 will drive stepping motor with micro-step method and the motor will rotate smoothly with low noise and finally gets to the designated position correctly.

[How to operate by pulse command signals]

Connect pulse command signals and Enable signal in according to article 4.1.

Turn on Enable signal. Output command pulses to AU9290, then, motor rotates to the angle corresponding to the number of command pulses.

8. Operation by Parallel I/O signals

If you use AU9290 with parallel I/O option, you can operate a stepping motor without a pulse generator.

Both of position control and speed control can be realized by parallel I/O signals. The function of parallel I/O signals is available for AU9290Nx1x.

AU9290 N103 and N104 are also provided with parallel I/O function but no output signal.

Parameter necessary to operate by Parallel I/O is as following.					
Data-ID	Name	Description			
0	Control mode	Set 1 for position control.			
		Set 2 for speed control.			
1	Pulse Mode	Only for N103 and N104, 'Pulse Mode' must			
		be set to 4 to make pulse signal invalid.			
2	Micro-step magnification	This value determines the positioning			
		resolution.			
10	Minimum speed	Set Minimum travel speed in the unit of rpm.			
12	Acceleration	Set acceleration in the unit of 10rpm/sec			
13	Deceleration	Set deceleration in the unit of 10rpm/sec.			
14	Travel speed-0	Set rotation speed-0 in the unit of rpm			
15	Travel speed-1	Set rotation speed-1 in the unit of rpm			
16	Travel speed-2	Set rotation speed-2 in the unit of rpm			
17	Travel speed-3	Set rotation speed-3 in the unit of rpm			
20	Travel command-0	Set travel distance-0			
21	Travel command-1	Set travel distance-1			
22	Travel command-2	Set travel distance-2			
23	Travel command-3	Set travel distance-3			
24	Travel command-4	Set travel distance-4			
25	Travel command-5	Set travel distance-5			
26	Travel command-6	Set travel distance-6			
27	Travel command-7	Set travel distance-7			
28	Travel magnification	Travel distance is given by each Travel			
		command multiplied by this value.			

[Parameters for parallel I/O control]

Parameter necessary to operate by Parallel I/O is as following.

[Position control mode] (Data-ID #0 = 1)

When Data-ID #0 is set to 1, parallel I/O signals are acquired as position control commands.

After turning on Enable signal, change parallel I/O signals (IN1 to IN4) to set position control command for AU9290.

<u>When IN4 is changed to ON from OFF</u>, AU9290 takes in data of travel distance and travel speed in according to the table below, and rotates motor by an increment of designated distance with designated speed.

IN3	IN2	IN1	Travel distance	Travel speed
OFF	OFF	OFF	Value of Data-ID #20	Value of Data-ID #14
OFF	OFF	ON	Value of Data-ID #21	Value of Data-ID #15
OFF	ON	OFF	Value of Data-ID #22	Value of Data-ID #16
OFF	ON	ON	Value of Data-ID #23	Value of Data-ID #17
ON	OFF	OFF	Value of Data-ID #24	Value of Data-ID #14
ON	OFF	ON	Value of Data-ID #25	Value of Data-ID #15
ON	ON	OFF	Value of Data-ID #26	Value of Data-ID #16
ON	ON	ON	Value of Data-ID #27	Value of Data-ID #17

The range of value for Data-ID #20 to ID #27 is from -32767 to +32767. Negative value is accepted.

If you need to set the value beyond +/-32767, you can set Data-ID #28 to set the magnification for travel distance.

AU9290 takes in travel distance and travel speed whenever IN4 changed to ON even if motor does not reach the target position. In this case, target position is summed up with last travel command and target speed is changed to the last travel speed.

[OUT1 signal output at position control mode]

At position control mode, OUT1 signal turns ON when driver is "ready" and motor position is on target position. That is, you can confirm by this signal if directed travel operation is finished or not.

- % "Ready" means that CPU finished initial setting, AU9290 is not in alarm status and power voltage is over the low voltage level.
- $\%\,$ AU9290N103 and N104 do not have OUT1 signal output.

[Speed control mode] (Control mode= 2)

When Data-ID #0 is set to 2, parallel I/O signals are acquired as speed control command.

After turning on Enable signal, change parallel I/O signals (IN1 to IN4) to set speed control command for AU9290.

<u>When IN1 to IN4 are changed</u>, AU9290 takes in data of rotation speed in according to the table below, and rotates motor with designated speed.

IN4	IN3	IN2	IN1	Rotation speed
OFF	—		_	0 rpm (Stop)
ON	OFF	OFF	OFF	Value of Data-ID #14
ON	OFF	OFF	ON	Value of Data-ID #15
ON	OFF	ON	OFF	Value of Data-ID #16
ON	OFF	ON	ON	Value of Data-ID #17
ON	ON	OFF	OFF	Negative Value of Data-ID #14
ON	ON	OFF	ON	Negative Value of Data-ID #15
ON	ON	ON	OFF	Negative Value of Data-ID #16
ON	ON	ON	ON	Negative Value of Data-ID #17

[OUT1 signal output at speed control mode]

In case of Speed control mode, OUT1 signal turns ON as long as AU9290 is "ready".

- * "Ready" means that CPU finished initial setting, AU9290 is not in alarm status and power voltage is not under the low voltage level.
- X AU9290N103 and N104 do not have OUT1 signal output.

9. Operation by serial communication

AU9290 can accept the motor control commands from serial communication of UART. No pulse generator is necessary to operate a motor by serial communication as same as parallel I/O control.

RS485 serial communication function is available for AU9290Nx2x N105 and N106. RS232C serial communication function is available for AU9290Nx3x.

The serial communication protocol is same for both of RS485 and RS232C.

[Parameters for serial communication control]

All data in AU9290 can be monitored, and all control data necessary to drive stepping motor can be changed by serial communication.

Data-ID	Name	Description			
0	Control mode	Set 1 for position control mode.			
		Set 2 for speed control mode.			
2	Micro-step magnification	Positioning resolution is determined by this			
		value. Please see article 7.			
10	Minimum Speed	Set minimum travel speed in rpm.			
12	Acceleration	Set acceleration in 10rpm/sec.			
13	Deceleration	Set deceleration in 10rpm/sec.			
60	Drive Command	Drive ON/OFF and alarm clear can be			
		executed by this data.			
61	Travel command	Set travel distance.			
62	Travel speed	Set target speed.			

Following table shows prima	v control data ⁻	for serial	communication control.

AS all data with ID less than 60 can be saved in non-volatile memory, it is not necessary each time to set them as long as you do not want to change them.

When Data-ID #0 is set to 1 (position control mode), you can rotate a motor to designated distance as you want.

Set Data-ID #60 to 1 to start excitation for a motor.

Set target speed to Data-ID #62.

Set travel distance to Data-ID #61.

Your stepping motor will rotate by an increment of designated distance with designated speed.

When Data-ID #0 is set to 2 (speed control mode), you can rotate motor with designated rotation speed.

Set Data-ID #60 to 1 to start excitation for a motor.

Set target speed to Data-ID #62.

Your stepping motor will rotate with designated speed.

Bit7 through Bit10 of Drive Command (Data ID #60) are equivalent to PIO inputs DIN1 through DIN4. By using of this parameter, PIO operation is realized in serial communication control.

Set Bit2 of Drive Command (Data ID #60), you can reset Present Position (Data ID #1000).

9.1. Protocol of serial communication

Asynchronous serial communication is provided on AU9290.

The communication protocol can be selected from TSC-Standard, Modbus-ASCII and Modbus-RTU.

In any protocol choosen, your controller is Master server, while AU9290 works as a slave server.

Data-ID	Name	Description
30	Device ID	Slave number for communicaion : $1{\sim}15$
31	Baud Rate	Baud Rate of communication Unit: 0.1kHz]
32	UARTsettings	0 : STOP=1, Parity= non, Length=8
		1 : STOP=2, Parity= non, Length=8
		10 : STOP=1, Parity=even, Length=9
		11 : STOP=2, Parity=even, Length=9
		20 : STOP=1, Parity=odd, Length=9
		21 : STOP=2, Parity=odd, Length=9
33	Communication Protocol	0 : TSC-Standard
		1 : Modbus-ASCII,
		2 : Modbus-RTU

UART parameters are also possible to be changed.

Next paragraph describes TSC-Standard protocol.

"AU9290 Modbus Communication Specification" shall be refered for Modbus protocol.

9.2. Protocol of TSC-Standard serial communication

[Configuration for Asynchronous communication]

Baud rate: 19.2 kbps, Parity: none, Data length: 8bits Stop bit: 1, Start bit: 1, Character code: ASCII Note: Baud rate can be changed.

[Read request Sequence]

(1) Master sends Read request to AU9290.

(2) AU9290 sends ACK and subsequently sends requested data to Master.

(3) Master sends ACK to AU9290.

[Write request Sequence]

(1) Master sends Write request to AU9290.

(2) AU9290 sends ACK with updating the value of requested ID.

Note: If there is any error in message from Master, AU9290 sends NAK.

[Format for Read request]

STX 1 Data-ID	;	Check SUM	ETX
---------------	---	-----------	-----

[Format for Write request and Read request response]

	-		1		1			
N	ГΧ	2	Data-ID	,	Data	;	Checksum	ETX

Length of 'Data-ID' and 'Checksum' is 4 characters.

Length of 'Data' is 4 characters for 2 bites data, and 8 characters for 4 bites data.

'Checksum' is lower 16 bits of summing result from 'STX' to ';'.

'Data ID', 'Data' and 'Checksum' are transferred in order from upper 4 bits to lower 4 bits.

[Slave designation]

Master can designate Slave by setting 'Slave-ID' in upper 4bits of 'Data-ID'.

'Slave-ID' must be 1 to 15 (F hex).

Slave will ignore received data if upper 4 bits of 'Data-ID' is neither 0 nor his ID number. That is, if upper 4 bits of 'Data-ID' is 0, the message is for everyone, so that all Slaves will make response.

10. Various functions of AU9290

10.1. Control mode

AU9290 operates a motor with position control mode or speed control mode.

At position control mode, AU9290 rotates a motor by an increment of designated distance. At speed control mode AU9290 rotates a motor with designated speed. Set control mode to Data-ID #0.

Data-ID	name	Description
0	Control mode	1 : Position control mode
		2 : Speed control mode

10.2. Pulse command mode

AU9290 accepts 2 types of pulse commands as below.

(1) Forward Pulse/Reverse Pulse:

AU9290 rotates a motor in the forward direction by an increment of number of forward pulses, and in the reverse direction by an increment of number of reverse pulses.

(2) Pulse/Direction:

AU9290 rotate a motor by an increment of number of Pulses in the direction of Direction signal.

Data-ID	Name	Description	
1	Pulse command	0: F-Pulse and R-Pulse	
	mode	1: Pulse and Direction	
		2: F-Pulse and R-Pulse (opposite direction)	
		3: Pulse and Direction (opposite direction)	
		4: Pulse signals are ignored (only for N103 and N104)	

10.3. Positioning resolution

If you set X to Data-ID #2, the positioning resolution is N x X, where N is basic number of steps (Data-ID #44).

This value is applied to pulse command signals and travel commands data (Data-ID #61 and Data-ID #20 thorough #27).

Please take account of the matter that this resolution does not affect micro-step resolution with that AU9290 makes micro-step driving.

ID	Name	Description
2	Micro-step magnification	This value determines the positioning resolution.
		The resolution is calculated by :
		(Basic Number of Steps)×(Micro-step magnification)
44	Basic Number of Steps	$360 \div$ Basic step angle (degree)

10.4. Rotating motor current

Motor current at rotating can be changed by Data-ID #3.

Please set to Data-ID #3 with the value of the percentage (%) to motor rate current.

Data-ID	Name	Description
3	Rotating motor current	Set in the unit of % / motor rate current

10.5. Stopping motor current

Motor current at stopping can be changed by Data-ID #4.

Please set to Data-ID #3 with the value of the percentage (%) to motor rate current.

Stopping status is detected when no more rotation command is accepted for the time set in Data-ID #5.

Data-ID	Name	Description	
4	Stopping motor current	Set in the unit of % / motor rate current	
5	Stop detection time	Set in the unit of m sec	

10.6. PIO input filter

To prevent error fetch of PIO signals, AU9290 takes in PIO signals after PIO signals get stable over the time set in Data-ID #6.

Data-II) name	Description	
6	PIO input filter	Filtering time for PIO input signals. Unit: m sec	

10.7. Origin search operation and Enable signal porarity

AU9290 is provided with origin search operation.

Origin search operation becomes valid by setting PIO Select (Data ID #7).

AU9290 makes the origin search operation as follows:

- (1) Start rotation of motor with the velocity of Travel speed-3 (Data ID #17) by turning ON of origin search start signal.
- (2) Stop rotation by turning ON of origin sensor and keep stopping for a designated perid of 'Origin Stop Time' (Data ID #18) and then start reverse rotation with 'Minimum Speed' (Data ID #10).

(3) Stop reverse rotation by turning OFF of origin sensor.

OUT1 signal keeps OFF during origin search operation, and comes ON after the end of operation.

Motor position (Data ID #1000) is reset at the end of origin search operation.

'PIO Select' (Data ID #7) selct input port of origin sensor and origin search start signal.

Porarity of origin sensor and rotation direction can be changed also by this parameter. If origin serach signal turns ON again in the process of origin search operation, AU9290 stops origin search operation making origin serach fault.

Bit6 of Drive Command (Data ID #60) is also works as origin search start signal.

Bit6 of Drive Status (Data ID #100) comes to 1 at the end of origin search opearation.

Bit15 of Drive Status (Data ID #100) comes to 1 at the origin search fault.

These data are useful for AU9290 of serial communication option to make origin search.

'PIO Select' (Data ID #7) also changes Enable signal polarity. (Please see Table 10.1)

Data-ID	Name	Description		
7	PIO Select	This parameter selects origin serch opearion and		
		enable-signal polarity as shown on next table.		
10	Minimum Speed	Creep speed in origin search operation: Unit [rpm]		
17	Travel speed-3	Start origin search with this speed: Unit [rpm]		
18	Origin Stop Time	Stop time at origin in origin search operation: [msec]		
60	Drive Command	Bit0=1: enable motor drive		
		Bit6=1: start origin search		
100	Drive Status	Bit6=1: end of origin search		
		Bit15=1: origin search fault		

Value			ch operation		Enable signal
Of	Origin	Start	Origin	Rotation	Porarity
PIO	signal	signal	signal	direction	
Select			porarity		
0		<u> </u>			Enable at ON
1		Origin sea	arch invalid		Enable at OFF
1000				Negative	Enable at ON
1001			ON	direction	Enable at OFF
1010			at origin	Positive	Enable at ON
1011	DIN1	when DIN3		direction	Enable at OFF
1100	signal	signal turned		Negative	Enable at ON
1101	Input	to ON	OFF	direction	Enable at OFF
1110			at origin	Positive	Enable at ON
1111				direction	Enable at OFF
2000				Negative	Enable at ON
2001			ON	direction	Enable at OFF
2010	DID		at origin	Positive	Enable at ON
2011	DIR	When Pulse		direction	Enable at OFF
2100	signal Innut	signal turned		Negative	Enable at ON
2101	Input	to ON	OFF	direction	Enable at OFF
2110			at origin	Positive	Enable at ON
2111				direction	Enable at OFF
3000				Negative	(Note 1)
3001		when DIN4	ON	direction	Enable normally
3010	Track 1.1	signal turned	at origin	Positive	(Note 1)
3011	Enable	to ON under		direction	Enable normally
3100	signal	condition that		Negative	(Note 1)
3101	input	DIN1 - DIN3	OFF	direction	Enable normally
3110		are all ON.	at origin	Positive	(Note 1)
3111				direction	Enable normally

 Table 10.1
 Setting of Origin search operation and Enable signal porarity

(Note 1) Enable only when Bit0 of DriveCommand (Data ID #60) is 1. This setting is effective only for AU9290 of serial communication option.

(Note 2) When PIO Select is set to 2000 through 2111, pulse command signal is ignored.

10.8. Smoothing parameters

When AU9290 gets a travel command from PIO or serial communication, AU9290 makes movement profile in according to Data-ID #10, #12 and #13 to make motor rotate smoothly.

Set required acceleration value in Data-ID #12 and deceleration value in Data-ID #13.

You may also set the minimum speed at acceleration and deceleration in Data-ID #10. The target speed set by PIO or serial communication must not exceed the value in Data-ID #11.

Data-ID	Name	Description		
10	Minimum speed	Set minimum speed at accel. and decel. Unit: [rpm]		
11	Speed limit	Target speed is limited by this value. Unit: [rpm]		
12	Acceleration	Set in the unit of 10rpm/sec		
13	Deceleration	Set in the unit of 10rpm/sec		

10.9. Serial communication parameters

The baud rate of serial communication can be changed with Data-ID #31.

You can also change UART settings with Data ID #32.

Setting of Data-ID #30 realizes multi-axis control by RS485 serial communication.

After changing parameters above, save them in non-volatile memory. Changes will be valid at the next power-ON.

Data-ID	name	Description	
30	Device ID	Device ID for serial communication: 1 to 15	
31	Baud rate	Set baud rate in the unit of 0.1kHz.	
32	UART settings	0 : STOP=1, Parity= non, Length=8	
		1 : STOP=2, Parity= non, Length=8	
		10 : STOP=1, Parity=even, Length=9	
		11 : STOP=2, Parity=even, Length=9	
		20 : STOP=1, Parity=odd, Length=9	
		21 : STOP=2, Parity=odd, Length=9	
33	Communication	0 : TSC-standard	
	Protocol	1 : Modbus-ASCII,	
		2 : Modbus-RTU	

10.10. Motor parameters

Please set correctly motor parameters, Data-ID #40 through Data-ID #44, so that AU9290 makes motor current flow normally

ID	Name	Description
40	Motor rate current	Set motor rate current Unit : [0.01A]
41	Winding resistance	Set motor winding resistance Unit : $[0.01 \Omega]$
42	Winding inductance	Set motor winding inductance Unit : [0.01mH]
44	Basic Number of Steps	Set the value calculated by $360 \div Basic Step Angle$

10.11. Parameters handling

Every data in AU9290 has Data-ID. Most of the data with ID less than 100 can be changed and the data with ID less than 60 are called Parameters and they can be stored in non-volatile memory.

Please set 1 in Data-ID #71, and then all parameters are stored in non-volatile memory.

If you need to change all parameters to default values, set 1 in Data-ID #70.

Please pay attention that the default values are not always same as factory settings.

Data-ID	name	Description
70	Parameters Init	Set 1 to initialize all parameters to default value.
71	Parameters Save	Se1 to store all parameters in non-volatile memory.

10.12. Status monitor

The operation status of AU9290 can be monitored with Data-ID #1	00
The operation status of the second be monitored with Data iD "	.00.

Data-ID	Name	Description
100	Drive Status	Bit0: '1' at drive ON
		Bit1: '1' at drive ready
		Bit2: '1' when motor is at targeted position.
		Bit3: '1' at alarm
		Bit6: '1' when origin search is completed.
		Bit8: '1' when step-out is detected.
		Bit9: '1' when power voltage is at over voltage level
		Bit10: '1' when power voltage is at low voltage level
		Bit11: '1' at overheat
		Bit12: '1' at over-load
		Bit14: '1' at current control error.
		Bit15: '1' at origin search fault
111	Power voltage	Power voltage can be monitored. Unit: [0.1V]
112	Drive temperature	Temperature around power deviceis can be monitored.
		Unit: [0.1°C]
120	Motor current	Motor current can be monitored. Unit: [0.01A]
121	Motor current	Motor current averaged for 0.1 sec can be monitored.
	(averaged)	Unit: [0.01A]

10.13. Alarm histories

AU9290 remembers last 32 errors and they are monitored with Data-ID #102 through #109.

Data-ID #102 - Data-ID #109 consists of 4 alarm codes with a size of 4 bits.

Data-ID	Name	Content
102	Alarm History-1	Alarm codes from last to 3 times before (4bit x 4)
103	Alarm History-2	Alarm codes from 4 to 7 times before (4bit x 4)
104	Alarm History-3	Alarm codes from 8 to 11 times before (4bit x 4)
105	Alarm History-4	Alarm codes from 12 to 15 times before (4bit x 4)
106	Alarm History-5	Alarm codes from 16 to 19 times before (4bit x 4)
107	Alarm History-6	Alarm codes from 20 to 23 times before (4bit x 4)
108	Alarm History-6	Alarm codes from 24 to 27 times before (4bit x 4)
109	Alarm History-7	Alarm codes from 28 to 31 times before (4bit x 4)

10.14. Step-out detection

AU9290 is provided with a function of step-out detection.

AU9290 detect step-out by change of motor current at high speed control situation.

Although step-out cannot be detected always for the above reason, this detection is still effective because step-out occurs due to torque decay at high speed rotation.

When step-out is detected, Bit8 of Drive Status (Data ID #100) turns to 1 and status-LED indication changes to orange blinking from green blinking.

When motor stops, step-out detection turns to off.

If Bit0 of Alarm-Mask (Data ID #35) is set to 0, AU9290 generate an alarm status at step-out detection. Alarm code of step-out is '2' same to over-load. Status-LED repeates 2 times red blinking.

Number of step-out detections can be monitored by the value of Data ID #210.

11. Protection for abnormal status

AU9290 is continuously checking the status and stop driving the motor when error is detected.

Red LED repeats blinking indicating alarm code number (see article 5).

You can also confirm the alarm code in Data-ID #101.

	e 10.1 Alarms and the solutions	
Code	Alarm name and the detail, the cause and the handling	
1	[Over current] Detect over current by shunt resistor.	
	1. Short of motor winding \Rightarrow Replace the motor	
	2. Short of motor cable \Rightarrow Replace the cable	
	3. Breakdown in motor drive circuits \Rightarrow Replace AU9290.	
2	[Over load] Average current of motor exceeded rated current of driver.	
	1. Motor rated current is too large \Rightarrow Review parameters (#3, #4, #40).	
	2. Abnormal control of motor current \Rightarrow Review parameters (#41, #42).	
	3. Breakdown of drive circuit \Rightarrow Replace AU9290.	
	[Step-out] Step-out is detected	
	1. Load torque is too large \Rightarrow Review the load and motor selction.	
	2. Velocity command is too large \Rightarrow Review the command velocity	
	Review the motor selection.	
3	[Current control error] Average deviation of current control is too large.	
	1. Breakdown of motor \Rightarrow Replace the motor	
	2. Disconnection of motor cable \Rightarrow Replace the cable	
	3. Abnormal control of motor current \Rightarrow Review parameters (#41, #42).	
4	[Current offset error] Offset in current sensing is too large.	
	1. Breakdown in current sensing circuits \Rightarrow Replace AU9290.	
5	[Overheat] Temperature exceeded overheat detection level (#38).	
	1. Motor current is too large \Rightarrow Review parameter (#3, #4, #40).	
	2. Abnormal control of motor current \Rightarrow Review parameters (#41, #42).	
	3. Breakdown in motor drive circuits \Rightarrow Replace AU9290.	
6	[Over voltage] Power voltage exceeded over voltage detection level (#36).	
	1. Voltage increased by regeneration. \Rightarrow Review operation pattern.	
1	2. Breakdown in voltage sensing circuits \Rightarrow Replace AU9290.	

Code	Alarm name and the detail, the cause and the handling	
7	[Voltage drop] Power voltage decreased under the value (#37).	
	1. Shutdown of Power supply \Rightarrow Research regeneration effect.	
	2. Disconnection of power cable \Rightarrow Replace power cable.	
	3. Voltage drop caused by power cable \Rightarrow Change the cable shorter.	
	4. Breakdown of drive circuit \Rightarrow Replace AU9290.	
8	[Parameters error] Value of a Parameter is wrong.	
	(This alarm is detected at parameter saving.)	
	1. Zero or negative value in a parameter where only positive value is allowed.	
	2. Negative value in a parameter where zero or positive value is allowed.	
	\Rightarrow Change the value of wrong parameter that Data-ID #189 shows.	
9	[Memory read failure] (This alarm happens at power-ON.)	
	1. Malfunction by noise \Rightarrow Power OFF and Power ON.	
	2. Memory data is destroyed. \Rightarrow Initialize and save parameters.	
	3. Breakdown of non-volatile memory \Rightarrow Replace AU9290.	
	[Memory save failure] (This alarm happens at parameter saving)	
	1. Malfunction by noise \Rightarrow Try parameter save again.	
	2. Breakdown of non-volatile memory \Rightarrow Replace AU9290.	

12. Data list

All the data in AU9290 has Data-ID, and each value can be monitored.

Most of the data with ID less than 100 can be changed.

The data with ID less than 60 are called Parameters and can be saved in nonvolatile memory.

The data size with ID larger than 999 is 32 bits long and 16 bits long for others.

ID	Name	Content
0	Control mode	1 : Position control mode
		2 : Speed control mode
1	Pulse command mode	0 : F-Pulse/R-Pulse
		1 : Pulse/Direction
		2 : F-Pulse/R-Pulse (opposite direction).
		3 : Pulse/Direction (opposite direction).
		Note: This parameter shall be set to 4 to enable PIO
		function in case of AU9290N103 and N104
2	Micro-step magnification	This value determines the positioning resolution.
		The positioning resolution is calculated by :
		(Basic Number of Steps)×(Micro-step magnification)
3	Rotating Motor current	Set motor current at rotating
		Unit : [%/Rate current]
4	Stopping Motor current	Set motor current at stopping
		Unit : [%/Rate current]
5	Stop detection time	Confirmation time to detect stop status
		Unit : [m sec]
6	PIO input filter	Set filtering time for PIO input signals.
		Unit: m sec
7	PIO select	Set origin search method and enable signal porarity
		in according to Table 10.1 in paragraph 10.7.

Parameter $#0 \sim #9$, Basic operation parameters

ID	Name	Content
10	Minimum travel speed	Minimum speed at Acc./Dec. Unit : [rpm]
11	Speed limit	Set Maximum speed. Unit : [rpm]
12	Acceleration	Set acceleration. Unit : [10rpm/sec]
13	Deceleration	Set deceleration. Unit : [10rpm/sec]

Parameter $#10 \sim #13$, Parameters for movement profile calculation

Parameter #14~#29, Parameter for PIO control.

ID	Name	Content
14	Travel speed -0	Target speed when PIO inputs are 0 and 4 Unit : [rpm]
15	Travel speed -1	Target speed when PIO inputs are 1 and 5 Unit : [rpm]
16	Travel speed -2	Target speed when PIO inputs are 2 and 6 Unit : [rpm]
17	Travel speed-3	Target speed when PIO inputs are 3 and 7 Unit : [rpm]
20	Travel command -0	Travel distance when PIO inputs are 0 Unit : [Pulse]
21	Travel command -1	Travel distance when PIO inputs are 1 Unit : [Pulse]
22	Travel command -2	Travel distance when PIO inputs are 2 Unit : [Pulse]
23	Travel command -3	Travel distance when PIO inputs are 3 Unit : [Pulse]
24	Travel command -4	Travel distance when PIO inputs are 4 Unit : [Pulse]
25	Travel command -5	Travel distance when PIO inputs are 5 Unit : [Pulse]
26	Travel command -6	Travel distance when PIO inputs are 6 Unit : [Pulse]
27	Travel command-7	Travel distance when PIO inputs are 7 Unit : [Pulse]
28	Travel command	Travel distance is given by each Travel command
	magnification	multiplied by this value.

ID	Name	Content	
30	Device ID	Device ID for serial communication :	$1 \sim 15$
31	Baud rate	Set serial communication frequency :	Unit : [0.1kHz]
32	UART setting	0 : STOP=1, Parity= non, Length=8	
		1 : STOP=2, Parity= non, Length=8	
		10 : STOP=1, Parity=even, Length=9	
		11 : STOP=2, Parity=even, Length=9	
		20 : STOP=1, Parity=odd, Length=9	
		21 : STOP=2, Parity=odd, Length=9	
33	Communication protocol	0: TSC-standard	
		1: Modbus-ASCII	
		2: Modbus-RTU	

Parameter #30~#39, Parameters for Serial communication control

Parameter #30~#39, Parameters for Alarm detection

ID	Name	Content
35	Alarm Mask	Bit0 = 1: Step-out alarm is masked and ignored.
		Bit2 = 1: Over load alarm is masked and ignored.
		Bit3 = 1: Current control error is masked and ignored.
		Bit5 = 1: Over-heat alarm is masked and ignored.
		Bit7 = 1: Voltage drop alarm is masked and ignored.
36	Over voltage detection value	Unit : [0.1V]
37	Voltage drop detection value	Unit : [0.1V]
38	Over-heat detection value	Unit : $[0.1^{\circ}C]$
39	Current control error	Set by percentage against motor rate current
	detection value	[%/rate current]

ID	Name	Contents
40	Motor rate current	Set motor rate current Unit : [0.01A]
41	Winding resistance	Set motor winding resistance Unit : $[0.01 \Omega]$
42	Winding inductance	Set motor winding inductance Unit : [0.01mH]
43	Motor inertia	(Reserved)
44	Basic Number of Steps	Set the value calculated by 360÷Basic Step Angle
45	Motor type	(Reserved)

Parameter #40~#45, Motor Parameters.

Parameter #48~#59, Driver Parameters

ID	Name	Content
48	Кср	Current control loop proportional gain Unit: [rad/sec]
49	Kci	Current control loop integral gain Unit : [rad/sec]
50	Current scale	(System parameter) Unit : [0.01A]
51	Drive rate current	(System parameter) Unit : [0.01A]
52	Drive maximum current	(System parameter) Unit : [0.01A]
53	Voltage scale	(System parameter) Unit : [0.1V]
54	Driver type	(System parameter)
-	-	-
56	Product Code	(System parameter)
57	Software Code	(System parameter)
58	Revision	(System parameter)

Data #60~#69, Control data for serial communication control

ID	Name	Content
60	Drive command	Bit0 = 1: Drive on
		Bit2 = 1: Reset present position (DataID #1000)
		Bit3 = 1: Alarm clear
		Bit6 = 1: Start origin search
		Bit7 - Bit10: Equivallent to PIO inputs $DIN1 - DIN4$
61	Travel command	Set travel distance Unit : [Pulse]
62	Travel speed	Set target speed Unit : [rpm]
63	Voltage command	Set target voltage at voltage control mode. Unit: [0.1V]

ID	Name	Content	
70	Parameters-Init	Set 1 to initialize all parameters to default value.	
71	Parameters-Save	Se1 to store all parameters in non-volatile memory.	
72	History-Save	Set 1 to store alarm histories to non-volatile memory.	
		Set 9 to clear alarm histories.	
73	Parameters-Read	Set 1 to read all parameters from non-volatile memory.	
74	History-Read	Set 1 to read alarm history from non-volatile memory.	
189	Error-Parameter-ID	Error ID is stored here when alarm-8 is occurred.	

Data #70~#79, Non-volatile memory handling data

Data #100~#119, Status

ID	Name	Content		
100	Drive Status	Bit0: '1' at drive ON		
		Bit1: '1' at drive ready		
		Bit2: '1' when motor is at targeted position.		
		Bit3: '1' at alarm		
		Bit6: '1' when origin search operation is completed.		
		Bit8: '1' when step-out is detected.		
		Bit9: '1' when power voltage is at over voltage level		
		Bit10: '1' when power voltage is at low voltage level		
		Bit11: '1' at overheat		
		Bit12: '1' at over-load		
		Bit14: '1' at current control error.		
		Bit15: '1' at origin search operation fault		
101	Alarm Code	Current alarm code		
102	AlarmHistory-1	Alarm codes from last to 3 time before.(4bit x 4)		
103	AlarmHistory-2	Alarm codes from 4 to 7 times before $(4bit x 4)$		
104	AlarmHistory-3	Alarm codes from 8 to 11 times before $(4bit x 4)$		
105	AlarmHistory-4	Alarm codes from 12 to 15 times before (4bit x 4)		
106	AlarmHistory-5	Alarm codes from 16 to 19 times before $(4bit \ge 4)$		
107	AlarmHistory-6	Alarm codes from 20 to 23 times before $(4bit x 4)$		
108	AlarmHistory-7	Alarm codes from 24 to 27 times before (4bit x 4)		
109	AlarmHistory-8	Alarm codes from 28 to 31 times before $(4bit x 4)$		

ID	Name	Content	
110	I/O Status	Bit0 : indicates status of Enable signal	
		Bit1~Bit4:indicate status of IN1~IN4 input signals	
		Bit8 : indicates status of OUT1 output signal	
111	Power voltage	Voltage applied to power circuits Unit : [0.1V]	
112	Motor temperature	Temperature around power devices $Unit : [0.1^{\circ}C]$	

Data #110~#112, Monitor for I/O status, power voltage and temperature

Data #120 \sim #121 Motor current

ID	Name	Content	
120	Motor current (instant)	Instantaneous motor current Unit : [0.01A]	
121	Motor current (average)	Motor current averaged for 0.1sec Unit : [0.01A]	

Data #1000~#1002, Position data (32 bits)

ID	Name	Content	
1000	Actual position	Present motor position Unit : [Pulse]	
1001	Position deviation	Difference between Actual position and target position	
		Unit : [Pulse]	
1002	Target position	Position directed to move Unit : [Pulse]	

13. Specifications

Basic specifications

PN	AU9290N1xx	AU9290N2xx	AU9290N4xx		
Power voltage	DC15V~DC28V	$DC15V \sim DC36V$	$DC30V \sim DC50V$		
Applicable	2 phase-unipolar	2 phase- Bipolar winding			
stepping motor	winding	2 phase-Unipolar winding			
D	Micro-step current control drive				
Drive method	Micro-step angle : Motor basic step angle $\div 64$				
Rating Output	1.8 Arms 2.4 Arms 2.0 Arms		2.0 Arms		
Installation	Operation temperature : $0 \sim 50^{\circ}$ C (note1)				
Environment Humidity : Less than 90%RH (No condensation)					

Note1: This value does not ensure a continuous operation with driver rating output without detecting over-heat alarm.

PN	Nx0x	Nx1x	Nx2x	Nx3x	N103,N104	N105,N106
Pulse inputs		2 inputs (note2)		2 (note5)	Non
Digital input	1 (note3)	5 (note3)	1 (no	te3)	5 (note5)	1 (note6)
Digital output	non	1 (note4)	No	n	Non	
Communication		Non			RS485	RS232C
I/F for PC	USB2.0 (]	USB2.0 (Full speed)				
Functions	Please refe	Please refer to paragraph 10				
Protections	Please refer to paragraph 11					
Parameters	All Parameters are saved in EEPROM					
Indication	dication 2-color LED					

Functions and Performances

Note2: Isolated with photo-couplers. Pulse signals up to 500 kHz are accepted in case output circuits are differencial line driver.

Note3: Isolated with photo-couplers.

Interface voltage is 5V for Nxx0 and Nxx1 and 12-24V for Nxx2.

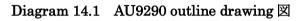
Note4: Isolated with photo-coupler. Maximum output current is 40 mA.

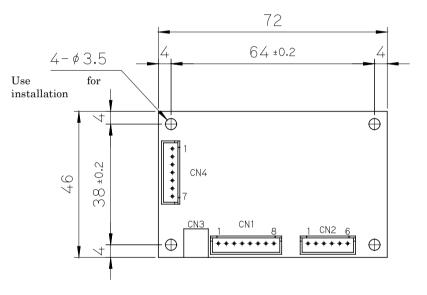
Note5: Pulse input circuits are shared with Digital inputs circuits.

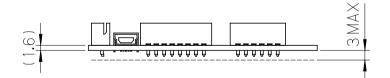
Receiving circuits are isolated with photo-couplers.

Interface voltage is 5V for N103 and 12-24V for N104.

Note6: Isolated with photo-coupler.


Interface voltage is 5V for N105 and 12-24V for N106.


Connectors


No	Madal of Connector	Mating connector	
No.	Model of Connector	Housing	Socket Contact
CN1	B8B-X1-A(LF)(SN) (JST)	XHP-8	SXH-001T-P0.6
CN2 for N1xx	B6B-X1-A(LF)(SN) (JST)	XHP-6	SXH-001T-P0.6
CN2 for N2xx, N4xx	B4B-X1-A(LF)(SN) (JST)	XHP-4	SXH-001T-P0.6
CN3	USB-Min B	-	
CN4 (note7)	B7B-X1-A(LF)(SN) (JST)	XHP-7	SXH-001T-P0.6

Note7: CN4 is not provided for AU9290Nx0x.

14. Outline drawing

Revision history

Date	Change content	Note
2016.03.21	First edition	
2017.07.18	Reviewed all pages	2nd Edition
	Additions:	
	(1) Description of N103-N06	
	(2) Origin search function	
	(3) Step-out detection function	
	(4) Description of Modbus-ASCII and Modbus-RTU	
	for serial communication protocol.	